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ABSTRACT
Translating visual art into music using machine learning mod-
els would be desirable in order to make large museum collec-
tions accessible to the visually impaired. However, generative
methods so far are either unable to work across more than
one sensory modality [24, 42] or require paired audio-visual
datasets [3, 18, 19, 47]. The Synesthetic Variational Autoen-
coder (SynVAE) introduced in this research is able to learn a
consistent mapping between sensory modalities in absence of
any such paired datasets by exploiting a common prior latent
space distribution for otherwise independent image and music
generation models.

Evaluation on the common MNIST [28] and CIFAR-10 [25]
datasets as well as on the Behance Artistic Media dataset (BAM)
[46] shows that SynVAE is capable of retaining sufficient infor-
mation content during the translation process while maintain-
ing cross-modal latent space consistency. Using information
theoretic metrics such as MINE [2], information content and
consistency can further be quantified effectively. These quan-
titative metrics were then used to create informed qualitative
evaluation tasks in which human evaluators matched musical
samples with the images which generated them. Accuracies
of up to 73% in these trials confirm a high degree of naturally
perceived audio-visual consistency.

1 INTRODUCTION
Art is experienced as a flow of information between an artist
and an observer. Should the latter be impaired in the principal
sense which the artwork is aimed at however, a barrier appears.
Such is the case for visually impaired people and paintings,
for instance. One way to overcome this obstacle might be to
translate the artwork from an inaccessible sensory modality
into an accessible one.

Considering this problem a cross-modal transformation of
information representations, we find similarities to the meth-
ods applied in machine learning: complex information such
as images or language are transformed into latent representa-
tions which the models are then able to process. The research
question of this thesis will therefore be to examine how we can
leverage such models to create representations in one sensory
modality to encode the information of another. Specifically, to
make visual art accessible by translating it into music.

Our research builds upon single-modality generative models
for images [14–16, 24] and music [33, 42] as well as multi-modal
models which leverage corresponding audio-visual data in order
to learn more stable information representations [18] or make
visual information more accessible [3, 47]. Furthermore, gener-
ative models have also been used to measure the expressiveness
of image-based audio generation tools for the visually impaired
[19] and as such they offer a solid basis for our approach.

After outlining the task and its associated challenges in this
section, we will go over the theoretical background in Section 2
and compare themwith related work in this field in Section 3. In
Section 4, we introduce our cross-modal translation model, the
Synesthetic Variational Autoencoder (SynVAE). The associated
unsupervised training methodology as well as the layout of our
experiments and evaluation procedures are provided in Section
5. The results thereof are presented in Section 6 and discussed
in Section 7 before applications and future areas of research are
identified in Section 8.

1.1 Motivation
Having access to the information content of a work of art as
well as to its place in the context of its contemporaries is a
prerequisite for participating in cultural settings such as art ex-
hibitions. In absence of the original visual information conveyed
by the artist, alternative channels of relaying the information
represented in the artwork are required. However, these may
be insufficient in several ways.

A verbal, auditive description of a painting may provide a
solid idea of what it depicts and place it within a richer con-
text. Describing the exact positioning and style of each element
within it for instance, is however more informative than en-
joyable. Modern art with its high levels of abstraction may in
addition be hard or impossible to describe using this method. A
tactile approach such as allowing someone to touch the canvas
or sculpture is more engaging, but may be insufficient to con-
vey higher level information. Implementation is also difficult
or impossible if the painting is flat or if touching the artwork
would irreparably damage it.

A musical approach seems fitting for this task since the
medium has a dense way of encoding artistic information and
can also provide a greater level of engagement due to its intu-
itive nature. Similarities between different musical representa-
tions might be recognised much quicker than descriptions of
similar contents across multiple paintings.

Indeed, projects such as "Eyes-Free Art" [40] in which a small
number of visual artworks were accompanied by specifically
composed music as well as verbal descriptions have yielded
positive feedback from visually impaired participants. Having
an artist compose a new piece of fitting music for each artwork
which shares consistent characteristics within the larger con-
text of the museum’s overall collection may however not be
possible due to cost concerns. As such, an artificial composer
could be used to fill that gap.

Generative machine learning models have already shown
promise in generating realistic music (see Section 3.2) and re-
cent research on cross-modal transformations between the vi-
sual and auditive domains have shown that images can be used
as a basis to produce related audio (see Section 3.3). The areas
of application for these models range from improving the acces-
sibility of information for the visually impaired [47] to enabling
the evaluation of assistive sensory devices using reproducible
quantitative metrics [19].

We aim to extend this field of research by not only working
with more abstract visual information in the form of art, but
also by enforcing a consistency criterion between audio-visual
pairs such that a listener may be able to infer properties and
similarities of images by hearing their corresponding musical
pieces alone.

1.2 Challenges
Automatically composing music which is conditioned on a vi-
sual prior and retains shared properties between similar items
comes with many challenges, starting with finding audio-visual
datasets, ensuring consistency between the two sensory modal-
ities during translation and finally, evaluating the results in a
quantitative manner while staying close to how humans actu-
ally perceive them.

Training models to generate realistic audio is difficult in
itself, mainly due to the sensitivity of human listeners to the re-
alism of a composition, but also due to the sparse availability of
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structured musical input data. Although some public datasets
of music are available, they unsurprisingly do not have any
annotations relating to related artwork [35, 39]. Image data
for artworks is more readily available, but even with well an-
notated sources, related music is not amongst the metadata.
Constructing a model proficient with both visual art and music
will therefore require it to learn relationships between those
two domains on its own, ideally in an unsupervised manner.

Since determining which music best represents a certain
piece of visual art will always be a subjective endeavour, we
will focus on the information content across representations
and on whether our model is able to correlate certain aspects
of music (e.g. a major or minor scale) with certain types of
visuals (e.g. light or dark images). Since we are not building
upon any human intuitions, the model might however also
produce results such as mapping brighter colours to deeper
notes although our experience might predict the contrary. The
key is consistency such that similar images produce similar
music.

This exposes the most crucial challenge of the process: con-
sistency within the latent space. Establishedmodels for learning
such latent representations from complex single-modality in-
put do exist in the form of Variational Autoencoders [24] (see
Chapter 2), but because we are simultaneously working across
the image and audio domains, latent consistency must also hold
across modalities. This means that similar images must not only
be embedded close to each other, but must also produce similar
audio.

Measuring correlation in these domains quantitatively is pos-
sible using information theoretic metrics, but it will nonetheless
be necessary to also measure whether audio-visual similarity is
perceived by humans consistently. Performing qualitative anal-
yses with human evaluators runs into the issue that the number
of samples and evaluators required to produce a generalisable
analysis might be implausible given the diversity of both vi-
sual art and music, especially in the absence of paired ground
truths. Pre-selecting samples for human evaluation manually
would however inevitably introduce bias of the curator and
make results impossible to replicate elsewhere. It will therefore
be necessary to first define quantitative metrics for measuring
latent space consistency and then use these metrics to make an
informed and reproducible selection of representative samples
to use when testing whether the model’s translations line up
with the intuitions of human evaluators.

1.3 Contributions
In an effort tomake visual art accessible to the visually impaired,
we attempt to find suitable auditory representations of artworks
by leveraging the strengths of autoencoding generative models.
The cross-modal synesthetic model introduced in this thesis
encodes an image into joint audio-visual latent space, generates
a melody based on the embedding and estimates the quality of
this mapping by trying to reconstruct the original image based
on the re-encoded musical latent representation (see Section 4).
This process allows for a fully unsupervised pipeline without
the need for paired audio-visual training data which are not
available in the fields of auditive and visual art.

Within the audio latent space, melodic samples which are
recognized as music are relatively rare compared to the amount
of audio noise. Therefore, we leverage a pre-trained model
specifically designed for music, fittingly called MusicVAE [42]

(see Section 2.2). By utilising its encoder and decoder within
our synesthetic model, we are able to bypass the complex issue
of music generation and can have a relatively high certainty
that the audio output will be a valid melody.

In order to verify the validity of this approach, the model is
first applied to the simple MNIST digit dataset [28], continuing
on to the more complex CIFAR-10 dataset [25] and finally an
extensive collection of contemporary works of art called the
Behance Artistic Media dataset (BAM) [46]. At each step our
method is evaluated by measuring the shared information con-
tent in both the visual as well as the auditive representations
using correlation metrics, the agreement of separately trained
classifiers and an estimation of mutual information using MINE
[2] (see Section 5.2). As a final test for the perceived quality of
the generated audio-visual pairs, a study with human evalua-
tors will be conducted according to a quantitatively informed
and reproducible method (see Section 5.3).

To summarize, our main contributions in this research are
as follows:

• With the Synesthetic Variational Autoencoder (SynVAE),
we introduce an unsupervised cross-modal architecture
for translating data from one sensory modality into
another consistently without the need for subjectively
paired ground truth datasets (see Section 4).

• In a series of experiments on generating music from in-
creasingly complex visual datasets (MNIST [28], CIFAR-
10 [25], BAM [46]), we leverage and compare a variety of
mutual information metrics in order to establish a quan-
titative basis for evaluating such cross-modal models
(see Sections 5.2 and 6).

• In a qualitative study based on these quantitative met-
rics, we evaluate the human perception of the cross-
modal translation consistency and lay out a framework
for avoiding subjective biases within this process (see
Sections 5.3 and 6).

2 BACKGROUND
In translating between visual and auditive domains, we rely on
an unsupervised generative model which learns consistent la-
tent representations. This section will therefore provide the nec-
essary background on our architecture of choice, the Variational
Autoencoder (VAE), as well as on methods used to improve its
performance (see Section 2.1). Furthermore, we explain how
such an autoencoder can be applied to music in Section 2.2 by
taking a closer look at the MusicVAE architecture [42] which
is employed in the auditive components of our final model.

2.1 Variational Autoencoders
Since machine learning models typically transform raw input
such as image pixels or sparse bag-of-word vectors into more
information dense representations, we can find an abundance
of encoder models which can perform this transformation task.
Actively enforcing meaningful consistencies between latent
representations is however more difficult. Much research has
gone into generative models which use meaningful latent rep-
resentations, but the sensitivity of human observers to smallest
aberrations in the output makes it exceptionally challenging to
produce realistic text, images or audio.

Variational Autoencoders (VAEs) [24] (see Figure 1) have a
specific focus on finding meaningful representations for the
data they are presented with in an unsupervised manner and
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Figure 1: Visual VAE Architecture. An image is encoded to
parametrize a Normal distribution from which the latent vector
zv is sampled. Adherence to the spherical prior constrains its
values to a consistent range. The output is reconstructed based
on zv .

are therefore well suited for our task. Using a generative com-
ponent called a decoder x ′ ∼ pdec(x

′ |z) which, given the latent
representation z of a data point x , attempts to reproduce the
underlying data realistically as x ′. The quality of said recon-
struction is measured by the expectation of the original x being
generated by the decoder distribution given z.

Ez∼penc(z |x )[lnpdec(x |z)] (1)

Typically, the expectation is approximated by reconstruc-
tion measures such as the Mean Squared Error (MSE) or the
L1 norm of the difference between x and x ′. More importantly
however, we see that z is sampled from yet another distribution.
This encoder z ∼ penc(z |x) is typically modelled as a multivari-
ate Gaussian with diagonal covariance of which the mean µ
and scale σ are determined using a model f θenc(x) with learned
parameters θ (see Equation 2). The encoder distribution is there-
fore parametrized differently depending on the original input
x , resulting in a distinct latent representation z.

z ∼ N(µ,σ I ) with µ,σ = f θenc(x) (2)

Since a sampling operation is non-differentiable, reparametri-
zation is used to produce an accurate sample while keeping the
chain of gradients intact. This is achieved by simply drawing a
noise vector ϵ from an independent Gaussian distribution and
scaling the parameters produced by the encoder such that the
sampling operation becomes Equation 3. In effect, the encoder is
forced to distribute the area occupied by latent representations
of x continuously around µ since it is not guaranteed a direct
mapping of x to z = µ + σ . At the same time, the decoder has
to learn that latent vectors in a certain range encode the same
or at least very similar images.

z = µ + σ ∗ ϵ with ϵ ∼ N(0, I ) (3)

In order to produce distinct latent vectors, f θenc(x)might sim-
ply learn to produce means which are as far apart as possible,
leading to an undesirably uneven latent space. Therefore the
Kullback-Leibler divergence (KL divergence) between the en-
coder distribution and a canonical prior of the same distribution
(e.g. pprior(z) = N(0, I )) is added as a regularizing loss term (see

Equation 4). This ensures that whatever mean and scale values
may be produced, they should lie close enough to the prior such
that differences in the data should only be represented within
the context of the latent space which is specified by the prior
distribution.

KL(penc(z |x) ∥ pprior(z)) =
∫
z ∈Z

penc(z |x) ln
penc(z |x)

pprior(z)
(4)

All of this leads us to the so-called Evidence Lower Bound
(ELBO) lossLELBO which encompasses both the reconstruction
quality of the encoder-decoder pair Lrec as well as a constraint
on how far the encoder may stray from the prior distribution
Llat:

LELBO = Lrec + Llat

Lrec = −Ez∼penc(z |x )[lnpdec(x |z)]
Llat = KL(penc(z |x) ∥ pprior(z))

(5)

This has several important implications: For one, sampling
from a latent embedding which is close to another should pro-
duce similar outputs due to the fact that pdec(x ′ |z) assigns it
a higher probability than if they were farther apart. The en-
coder’s sampling operation as well as Llat further ensure that
given enough training time and data, the latent embeddings
should flow into each other such that the latent space becomes
continuous around the prior distribution. In theory, sampling
an embedding from anywhere within that space and passing
it to the decoder should therefore yield a sensible generative
output.

Additionally, sampling from in between embedding vectors
by means of interpolation should produce output which is a
coherent mix of all original input data points. This also allows
for the calculation of attribute vectors for certain properties by
subtracting the embeddings of inputs which do not have that
property from those which do. This vector can then be applied
to data points to either include (addition) or exclude (subtract)
that property.

For our purposes, the continuous latent spaces learned by
VAEs are especially valuable. They provide us with a degree of
certainty that the latent representations encode some consis-
tent meaning and that intermediate points in the latent space
characterise meaning differences continuously. Since we are
furthermore trying to work with disparate spaces with respect
to modality, it becomes even more important that if one space
is mapped into another, meaning differences in one translate to
consistent meaning differences in the other.

Although we prioritise the continuity of the latent space, this
comes at the cost of reconstruction quality as outputs produced
by the VAE’s decoder tend to be blurrier. This is because Llat
can be minimized by mapping all data as close as possible to the
prior and by compensating for the less distinct reconstructions
through ambiguity (i.e. collapsing all reconstructions to their
average). Additionally, constraints on the latent space may need
to be relaxed if data is more complex than can be modelled
by the spherical Gaussian prior. The β-VAE architecture [16]
therefore incorporates an upper bound τ on the Llat < τ term,
resulting in the reformulated loss:

Lβ = Lrec + βLlat (6)
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Figure 2: MusicVAE Architecture. 1/16th notes in a one-hot
piano-roll are encoded using a bidirectional RNN to parame-
trize a Normal distribution. The latent vector za sampled from
the encoder initializes the hierarchical decoder’s conductor
RNN which in turn initializes the output generator RNN.

in which the β hyperparameter is tuned according to the
complexity of the task at hand. A β > 1 would encourage
stronger adherence to the prior while values < 1 allow for
more flexibility. Since it is difficult to encode pixel-level detail
into our short audio representations, we are more interested in
higher level features of the input images. Blurrier reconstruc-
tions therefore represent an acceptable trade-off for consistent
latent spaces.

2.2 MusicVAE
Although VAEs are typically used in a visual setting, recent
work has found them to be applicable to music as well. Focusing
on both the quality of the output as well as the consistency of
the latent space, MusicVAE [42] provides another indispensable
piece of groundwork for our task. Due to the availability of its
pre-trained latent space and decoder, it alleviates us from the
need to train and tune our own musical generative model from
scratch.

The VAE architecture behind MusicVAE (see Figure 2) uses
Recurrent Neural Networks (RNNs) with Long Short-Term
Memory cells (LSTM) [17] to encode and decode MIDI mu-
sic representations. A "generator" RNN sequentially produces
1× 90 note distributions at each step until one bar of music con-
sisting of 16 notes has been generated. The melodies produced
are monophonic and each one-hot output over all N notes is
produced by sampling from a softmax distribution σ (o, τ ). It is
parametrised by the note probability distribution output of the
RNN o and a temperature parameter τ ∈ (0, 1].

σ (on, τ ) =
exp(onτ )∑N
i=0 exp(

oi
τ )

(7)

Here τ controls the degree to which the distribution ap-
proaches a one-hot categorical, a value of 1 preserving the orig-
inal distribution while a smaller value shifts the distribution

even more towards higher probability notes. A value of τ = 0.5
as used in the original paper therefore produces note sequences
which follow a more coherent pattern which is desirable for
producing the final output melodies. During training however,
the default value of 1 is retained in order to optimise the actually
generated distribution in a smooth and proportional manner.

Once the output note sequence has been sampled, each of
these one-hot vectors is converted into the corresponding Mu-
sical Instrument Digital Interface (MIDI) format. This involves
setting the pitch of the corresponding 1/16 note as well as con-
trolling for continuous note presses as opposed to repeated
attacks and adding pauses where specified.

Each full bar of music is generated sequentially using a gen-
erator network, but the initialising input which it receives at the
beginning of each bar is produced by a higher level RNN called
the "conductor". This network takes the original music’s en-
coded latent embedding as its initial input and produces initial
states for the lower note-level generator RNN after each con-
sequent bar. This hierarchical approach was found to preserve
longer term dependencies much better than a flat architecture
using only the lower-level generator. This enables MusicVAE
to produce music with up to 16 bars (i.e. 256 note slots across
approximately 30 seconds) using piano melodies, bass, drums
and combinations thereof.

Although hierarchical embedding architectures are also tech-
nically possible, most publicly available pre-trained models
make use of a flat bidirectional RNN architecture. Its final
forward-directional output is concatenated with the final back-
ward-directional output to produce the mean and scale of a
multivariate Normal distribution from which the latent embed-
ding with a consistent dimensionality of 512 across all model
types is sampled. The VAE-specific properties related to latent
space consistency appear to hold such that interpolation be-
tween the embeddings of two separate pieces of music produces
new musical output which realistically lies between them. This
consistency in addition to the availability of pre-trained models
allows us to focus on the actual task of audio-visual translation
and makes MusicVAE an ideal candidate for our experiments.

3 RELATEDWORK
To the best of our knowledge, no previous work attempts to
generate music based on visual art automatically. The methods
used in different parts of this task are nonetheless strongly tied
to ongoing research. For example, the need to learn a latent
space for visual art based on generated reconstructions relates
closely to the field of image generation (see Section 3.1). Simi-
larly, research on music generation corresponds to our goal of
generating realistic music from a consistent latent space (see
Section 3.2). Finally, we also take a look at efforts in the area of
cross-modal models which aim to convey visual information in
an auditory manner (see Section 3.3).

3.1 Image Generation
Tasks involving the generation of realistic images have been an
active field of research, partially due to the wide availability of
well curated datasets. In addition to common candidates such
as MNIST [28], CIFAR [25] or ImageNet [5], famous paintings
from before the 20th century have already largely come into the
public domain. Permissibly licensed contemporary artworks are
harder to come by, but a highly curated set of approximately 2
million artworks which are consistently annotatedwith content,
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artwork type and simple sentiment is available as the Behance
Artistic Media dataset (BAM) [46] and will be used for our final
experiments involving visual art.

The most common tools used to process such data are Con-
volutional Neural Networks (CNNs) [27] which represent the
state-of-the-art in creating latent representations from image
data (e.g. AlexNet [26], VGG [43], Inception [44]). By inverting
their convolutional operations, latent representations can also
be iteratively up-sampled to 2D RGB images, thereby making
them indispensable for image generation.

Generative Adversarial Networks (GANs) [12] have been
especially successful in generating high-resolution images of
remarkable quality [12] even when conditioned to produce
conditional output not seen during training [13]. Using deep
CNN architectures alone, it has even been shown to be possible
to transfer an artistic style from one image to another [6, 11].
In this setting, a painting or similarly distinct style template is
used to compute a representative latent vector. It is then applied
to an unrelated image such that the output bears resemblance
both to the style as well as the original image. This shows that
strong artistic constraints can be realistically applied within
one modality. While the quality of productions from these kinds
of models is high, they lack explicit embeddings. Input vectors
can of course be trained to represent good initialisations for
certain kinds of output, but additional constraints are required
in order to guarantee a consistent latent space.

VAEs have also enjoyed success in this field, but it has been
notoriously difficult to tune them in order to produce simi-
larly detailed results. At the cost of increased complexity, there
have been attempts to find loss formulations which allow for
higher quality reconstructions while maintaining the desirable
quality of latent space continuity. Besides the aforefemntioned
β-VAE architecture [16], PixelVAE [15] for instance has shown
to be able to produce realistic reconstructions of faces using
the CelebA dataset [30] while maintaining a continuous latent
space.

Another approach using the so-called DRAW architecture
[14] has shown how VAEs combined with RNNs can amplify
each other’s strengths by sequentially creating an image with
selective attention. This process has been shown to work for
both the MNIST [28] and StreetView house number dataset [37].
Due to the increased complexity of both PixelVAE and DRAW
however, we decided to use a simpler β-VAE architecture as a
starting point for image generation.

3.2 Music Generation
Generating music synthetically requires an equal amount of
realism compared to image generation and also imposes its
own additional challenges. While it is inherently a sequential
task, the scale-differences between short-term and long-term
dependencies can be enormous. Individual time-steps in an au-
dio waveform may be minuscule and range in the milliseconds
while the full musical composition they are a part of can last
several seconds, minutes or hours. As such, typical sequential
models such as RNNs have trouble maintaining consistency
across both scales.

Nonetheless, direct waveform synthesis of 16 kHz audio
samples with highly rated quality has been accomplished using
WaveNet-like architectures [45]. Using deep CNNs at different
timescales, they manage to maintain consistency at both the 1
millisecond and multi-second time scale. While focused mainly

on speech synthesis, generating realistic single note waveforms
using this architecture has also been accomplished with NSynth
[8]. Unfortunately, this method comes with high computational
complexity due to the high number of sampling operations over
time. Tackling this problem in particular, GANSynth [7] has
been introduced to reliably generate full waveforms in a single
step by using a waveform representation which is less prone to
shifts across convolutions and by using a progressive training
technique [22].

Although research in the field of direct waveform synthesis
is progressing quickly, the ability to generate spectrograms of
full musical compositions is still a work in progress. On these
longer scales, the current focus lies on generating not the wave-
forms themselves, but the notes which represent them. This
allows for each individual the time step to be much larger (e.g.
1/16 notes). Using the MIDI piano-roll format, output represen-
tations can thus also be modelled with one-hot encodings for
each instrument and pitch. A model using this representation
can generate one note of music at a time until the full musical
composition is completed.

Building on a Biaxial LSTM architecture [21], the DeepJ
model [33] consists of an RNN architecture which is capable of
composing MIDI music conditioned on certain composers and
their respective styles. The synthesized reconstructions were
rated highly by human listeners and the conditioned style was
also confirmed by music experts. Since the model was able to
produce polyphonic melodies over long stretches of time, RNNs
seem appropriate for this type of music generation. However
this method alone does not suffice for our purposes, since the
conditioning of this synthesis process is not precise enough
to model complex information such as images. Similarly, the
recently introduced MuseNet [38] which uses sparse transform-
ers [4] to generate highly realistic, multi-minute polyphonic
MIDI output, can be conditioned on certain styles, composers
and combinations thereof, but also lacks consistent embeddings
for the music itself.

Finally but crucially, sufficient amounts of musical data un-
fortunately very often remain copyrighted such that associated
research only publishes meta-data instead of the original train-
ing files. Notable exceptions to this rule include the LankhMIDI
Dataset (LMD) [39] with about 180,000 songs and the Saarland
Music Data [35] which includes 50 piano pieces donated by
music students. To avoid the music data acquisition problem
entirely, we will instead make use of the knowledge stored in
the pre-trained MusicVAE (see Section 2.2) which has already
learned to generate and encode music based on a proprietary
dataset consisting of ∼1.5 million songs and provides us with
the best balance between performance and latent space consis-
tency.

3.3 Audio-Visual Models
Prior research on audio-visual models focuses on improving
model performance through multi-modal information as well
as on improving the accessibility of visual information through
audio representations.

Exploring the capability of generative models to translate
from one sensory modality into another, attempts have been
made to translate videos of instruments being played into the
corresponding sound and vice versa [3] as well as to generate
realistic background audio for visual scenes (e.g. rustling leaves
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for a forest video) in order to provide visually impaired peo-
ple with relevant semantic information for a given image [47].
Although some artefacts remained in the generated images
and audio, the correct audio-visual correspondence was typi-
cally maintained when evaluated by human annotators. This
confirms that cross-modal transformations in the audio-visual
domain are indeed possible. However, these methods did not
produce longer pieces of music and did not enforce latent space
consistency in any way.

Focusing on cross-modal latent spaces in particular, the Par-
titioned Variational Autoencoder (PVAE) [18] has been suc-
cessfully used to encode MNIST digits paired with audio of
their spoken counterparts. This model uses one latent space
per modality and joins them during decoding. It was shown
that the multi-modal information aided in making the embed-
dings of different digits more distinct while also maintaining
continuity of the latent space and allowing for interpolation,
even between visual and auditive information. Models with
VAEs at their core are therefore able to work with multi-modal
information simultaneously.

The aforementioned methods lend credibility to the fact that
generative models can be used in a cross-modal fashion in the
audio-visual domains. However, these approaches have one
commonality which does not apply to paintings and music:
paired datasets. Additionally, the final quality of the model
can only be measured with the aid of human evaluators. A
representative number of participants and data points must
therefore be available in order for generalizable conclusions to
be drawn from the results.

Faced with a similar problem Hu et al. (2019) [19] there-
fore propose an automated cross-modal evaluation procedure
for measuring the expressiveness of assistive devices which
represent visual information in audible form. While the so-
called vOICe device [34] used in their research uses a direct
mapping of positional pixel values to high/low and loud/quiet
audio instead of synthetic melodic output, their evaluation
methodology involves cross-modal GANs which attempt to
reconstruct images based on their automatically generated au-
ditive representations. The reconstructions are then classified
using pre-trainedmodels such that their accuracy can be used as
an indicator for the retained cross-modal information content.
In their additional human evaluations, these metrics correlate
strongly with human scores. This shows that even without
existing paired datasets, it is possible to evaluate cross-modal
models in a quantitative and meaningful manner.

Given the existing research, we can conclude that audio-
visual translation using cross-modal generative models is a
viable endeavour and that quantitative and qualitative evalua-
tion metrics can be used in conjunction to draw representative
conclusions. Our model will attempt to improve upon these
findings by learning to produce longer, melodic representations
of complex visual information in an unsupervisedmanner while
maintaining a consistent latent space.

4 SYNESTHETIC VAE
Translating information across the audio-visual modal bound-
ary requires a synesthetic approach. In the following, we intro-
duce the SynVAE architecture which is capable of maintaining
cross-modal information consistency and circumvents the lack
of paired image-music datasets by learning latent representa-
tions in an unsupervised manner. SynVAE as described in this

section is therefore applicable to any cross-modal transforma-
tion task.

By initially treating each modality separately and by using
single-modality models which have unrestricted access to abun-
dant high quality data in their respective domains, we are able
to remove the need for subjective correlations of images and
music and are able to follow a fully unsupervised approach.
Equipped with models from both the audio and the visual do-
main, we can construct the pipeline of our fully synesthetic
model SynVAE which is outlined in Figure 3.

Initially, the visual encoder pvenc(zv |x) creates a 512 dimen-
sional latent representation zv from the original image x using
a CNN architecture based on the single-modality VisVAE. As is
the case with all VAE-based models, zv is not computed directly,
but rather sampled from a distribution which is parametrized
by the visual encoder network. In this case, this distribution is
a multivariate NormalN(µv ,σv I ) with mean µv and diagonal
covariance σv . Akin to the single-modality case, the sampling
operation of zv itself is performed through reparametrization
(see Equation 3) in order to maintain differentiability.

Since this vector has the same dimensionality as the Music-
VAE latent space, it provides the initial state for the pre-trained
music decoder padec(a |zv ) which then produces a melodic out-
put a using its hierarchical conductor-generator architecture.
These two components make up the overall synesthetic en-
coder, the input of which is the original image x and the output
of which corresponds to its audio representation a. During
inference, this stand-alone encoder psenc(a |x) can be used to
perform the audio-visual transformation (see Equation 8).

a ∼ psenc(a |x) = Ezv∼pvenc(zv |x )[padec(a |zv )] (8)

Training the model however requires a differentiable loss for-
mulation which quantifies the difference in information content
before and after the latent space transformations. Therefore
the audio output is first re-encoded as za using the pre-trained
bidirectional MusicVAE encoder RNN paenc(za |a) into the 512
dimensional music latent space. Once again, this auditive latent
vector is computed by sampling from a multivariate Normal
parametrized by the auditive encoder network. It is then passed
through VisVAE’s CNN decoder pvdec(x ′ |za ) to produce an
image reconstruction x ′. These two components which in con-
junction transform audio a into a corresponding image x ′ make
up the synesthetic decoder psdec(x ′ |a) in Equation 9.

x ′ ∼ psdec(x
′ |a) = Eza∼paenc(za |a)[pvdec(x

′ |za )] (9)

Both latent vectors in this model are sampled from the same
type of distribution and are also trained to express differences
in the data while staying close to the same canonical prior
(i.e. N(0, I )) through the KL divergence term in the ELBO loss
(Equation 5). This actively encourages the latent spaces to follow
a similar and consistent shape acrossmodalities when compared
to an unregularized training procedure and is therefore at the
core of our unsupervised approach.

The architecture requires an expressive musical latent space
with high variability. For this reason, the weights of the pre-
trained MusicVAE model remain fixed throughout the entire
training process as it is assumed that the overall model is able
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Figure 3: Synesthetic VAE Architecture. An image is first encoded into a latent vector zv before being decoded into music. The music
in turn is re-encoded into za and reconstructed into the output image.

to encode different images into areas of the latent space which
are distinct enough to enable meaningful reconstructions.

In addition to ensuring stable audio generation, the frozen
music components also allow for the total loss formulation to
remain almost identical to the visual-only case (Equation 6).
This is due to the fact that, firstly, audio reconstruction quality
need not and cannot be measured due to the general absence
of an audio-visual ground truth. Secondly, since the auditive
encoder’s parameters are not being updated and it was trained
using the same canonical prior as the visual components, no ad-
ditional regularising KL constraint on its distribution is required.
The differentiable basis Lsyn for the optimisation process there-
fore only consists of a KL constraint on the visual encoder, in
addition to the comparison of the synesthetic decoder’s recon-
struction against the original image:

Lsyn = Lsrec + βLslat

Lsrec = −Ea∼psenc(a |x )[lnpsdec(x |a)]
Lslat = KL(pvenc(zv |x) ∥ pprior(zv ))

(10)

The β parameter once again controls the balance between
reconstruction quality and adherence to the canonical prior. In
the synesthetic case this carries additional importance since the
actively trained visual components cannot stray too far from the
prior without risking to land in undefined music space. Within
this pipeline, the auditive components therefore act as strong
regularizers on the overall model since they are kept fixed dur-
ing training and therefore pre-determine the expressiveness
of the audio-visual latent space. The remaining trainable pa-
rameters of the model’s visual components can then either be
learned from scratch or be initialised using a pre-trained visual
VAE which is known to produce good image reconstructions.
Since only the parameters of one modality are trained, we are
able to uncouple the simultaneous use of paired image and
audio data and are also able to maintain a simple optimisation
target.

Furthermore, by replacing the visual or auditive components
of this model, it would be possible to extend this approach to
different modalities as well. For instance, switching out the
auditive and visual components of this model results in a Syn-
VAE which encodes musical data into corresponding visual
representations. Regardless of the modality pair, as long as the
encoders are regularized with matching prior distributions and
the central generative component (i.e. the music decoder in our

experiments) is capable of producing realistic results across its
latent space, the cross-modal translation is likely to succeed.
Since advances in single-modality models are being made con-
stantly, this architecture could keep on improving in parallel
with these higher quality generative models given that these
offer consistent latent spaces.

5 METHODOLOGY
Considering the lack of established methodology for the en-
tirety our task, we approach each partial problem with well
proven methods before combining them into our final solution.
In Section 5.1 we therefore first describe the implementation
and training procedures behind both the single-modality β-VAE
architectures for encoding images (VisVAE) and the pre-trained
MusicVAE before finally combining these visual and auditive
models into a single synesthetic pipeline. Since novel methods
of evaluating this approach are required, we lay out both the
quantitative and qualitative procedures in Sections 5.2 and 5.3
respectively.

5.1 Implementation
As described in Section 4, SynVAE is constructed from initially
independent single-modality components which are combined
into the final model. For the task at hand, this means that it
is necessary to first construct appropriate VisVAEs and then
combine them with the pre-trained MusicVAE models.

Learning a latent space for simple images such as from
MNIST and CIFAR-10 is a common baseline task for VAEs (e.g.
[14, 15, 24, 41]). As such, we also begin by training a purely vi-
sual VAE and by tuning the β hyperparameter in order to obtain
the appropriate trade-off between reconstruction quality and
KL divergence. The encoder follows a typical CNN architecture
with a different number of convolutions and filters depending
on the complexity of the task at hand. The final CNN output is
passed into two separate fully connected layers which indepen-
dently produce the mean and scale vectors which parametrize
the encoder’s multivariate Gaussian distribution.

Using reparametrization (see Equation 3), the latent vector
is sampled from said distribution and passed to the decoder.
The embedding then passes through a fully connected layer
followed by deconvolutional layers which mirror the encoder’s
architecture until the original image dimensions are restored
in the final layer. Each pixel in the final layer is normalized
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in [0, 1] using a sigmoid activation, thereby representing the
decoder’s output distribution.

Due to the aforementioned unavailability of ground truth
paired music data for the visual datasets, as well as to avoid
training a complex generative model for music from scratch,
we rely on pre-trained models from the MusicVAE project [42].
Their general architecture is described in Section 2.2. Although
we found their complex 16-bar melodic model to fit well within
our architecture, our final experiments were run using the large
2-bar melodic architecture because of the latter’s leaner archi-
tecture and the fact that its shorter outputs are easier to digest
for our human evaluators. Due to the brevity of the output,
this model neither uses a hierarchical encoder, nor decoder and
instead uses a flat RNN structure. The encoder hereof uses the
aforementioned bidirectional LSTM structure with a 2 × 2048
output length vector. Passing this vector through two separate
fully connected layers produces the mean and scale parameters
of a Gaussian from which a latent representation of size 512
is sampled. This embedding is decoded using 3 stacked LSTM
cells with 2048 units each, until a sequence of 32 notes (i.e. 2
bars of music) have been generated. This yields a final melodic
audio with a length of approximately 4 seconds.

After tuning the single-modality models to generate results
of sufficient quality in their respective domains, they are trans-
ferred into SynVAE. Their encoder and decoder architectures
(i.e. the number of weights and how these are connected) are
kept fixed and for the auditive components, the values of these
weights are frozen as well. For the visual components which
continue to be optimized during SynVAE training, we found
that using the VisVAE’s weights as initialization slightly im-
proved the convergence time for more complex datasets, but
that this was not strictly necessary in order for it to produce
meaningful reconstructions.

The software implementation itself is built upon the Ten-
sorFlow framework [1] and is written in Python 3. The full
source code for SynVAE is available at https://personads.me/x/
synvae-code.

5.2 Quantitative Evaluation
The metrics by which the synesthetic model’s performance is
measured should ideally reflect how strong correspondences
between similar images and their generated music are. As with
any generative model, measuring this quantitatively is quite
difficult. Our gold standard is therefore set by the ability of hu-
man evaluators to extract correspondence information between
similar images and audio. Nonetheless, we also use quantitative
metrics to measure overall correlative effects and in order to
pre-select representative samples for the final human evalua-
tion.

One principal quantitative metric is already present in the
loss formulation Lsyn, namely the reconstruction error term
Lsrec (see Equation 10). Although the pixel-by-pixel difference
measured byMSE is by nomeans an ideal way tomeasure image
similarity, differences between models nevertheless indicate
the degree to which information may be lost within the latent
embedding space.

Furthermore, using the labels available in the visual datasets,
we are able to measure how well the latent representations
encode semantic similarity by calculating the nearest Euclidean
neighbours of each encoded data point in both the visual as well
as the auditive latent spaces and by evaluating the number of

neighbours with the same label in the closest 10, 5, and 1 results
(i.e. precision at rankn). Although our models are not trained on
these labels, images of the same class nonetheless share visual
similarities. This is especially the case for simpler datasets such
as MNIST. Higher precision may therefore also indicate more
expressive latent representations. By measuring the difference
in precision before and after the audio transformations, we
also gain an additional quantifiable insight into the amount of
information encoded in the generated music.

This method assumes a correlation between labels and MSE
pixel similarity since this is the main metric which the model is
optimizing for. For more complex datasets and even CIFAR-10,
this may be insufficient since, for instance, not all cars have
the same colour. Therefore we attempt to bridge this gap us-
ing the metric of reconstruction classification accuracy. Using
the same network architectures as for the visual encoders, we
exchange the final layer with a simple softmax output which
corresponds to the class probabilities assigned to the input im-
age. This classification network is then trained and tested on the
original dataset to produce a baseline and then re-initialized, re-
trained and evaluated using the reconstructed dataset produced
by VisVAE and SynVAE. The resulting classification accuracy
can then also be used as a quantitative metric for the retained
information content.

Finally, we are strongly interested in the degree to which the
visual and auditive latent spaces within the synesthetic model
overlap. As a prior, they both share a zero-centred multivariate
Gaussian with unit variance and as such they should not lie to
far away from its spherical shape. In principle, images lying
closer together in the visual latent space should also lie closer to
each other in the auditive latent space forming similar clusters.
Since we do not have paired images and audio however, there
is no immediate way to measure this.

Instead we make use of Mutual Information Neural Estima-
tion (MINE) [2] in order to approximate a lower bound on the
mutual information I (Zv ;Za ) of corresponding visual and au-
ditive latent vectors, zv ∈ Zv and za ∈ Za . This is achieved
by maximizing the score of true audio-visual latent pairs (i.e.
p(Zv ,Za )) while minimizing the same value for non-matching
latent vectors (i.e. p(Zv )p(Za )). The estimation of the values
themselves can be performed using any functionTθ (zv ;za ) and
is typically chosen to be a neural network with weights θ . In
our experiments, it is a small estimator network with one 128
unit and one 64 unit layer. While the original MINE objective
uses N latent vector pairs as negative samples, we opt for the
more data efficient and less biased formulation of DEMINE [29]
which uses N 2 negative pairs (see Equation 11).

I (Zv ;Za ) ≥
1
N

N∑
i=1

[Tθ (zv ,i , za,i )]

−
1
N 2

N∑
i=1

N∑
j=1

[eTθ (zv ,i ,zv , j )] + 1

(11)

Since we do not use this objective for training SynVAE or tun-
ing its hyperparameters, we can optimize on the entire dataset
and use Tθ ’s estimation as the actual mutual information’s
lower bound. Higher values would indicate that true audio-
visual latent vector pairs share more information than unrelated
pairs. This allows us to calculate a quantitative metric based
on solid information theoretical principles which can then be

https://personads.me/x/synvae-code
https://personads.me/x/synvae-code
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used to compare synesthetic models amongst each other with
regard to their cross-modal latent space consistency.

5.3 Qualitative Evaluation
All of the aforementioned quantitative metrics are useful in-
dicators of our model’s performance. In the end however, we
are most interested in whether human listeners can correlate
similar images and audio in the same way as SynVAE would
predict. For instance, given that the model embeds two images
close to each other in latent space, the audio generated from
them should also be perceptibly similar. Evaluating the entire
corpus covering many thousands of images is however not fea-
sible and as such, a pre-selection of representative samples is
a practical necessity. Determining representative data points
manually would also involve processing the dataset in its en-
tirety and would additionally introduce the selector’s bias into
the evaluation. We therefore propose a more consistent and
reproducible approach.

For labelled image data, we are able to compute the mean
latent vector per class by averaging the embedded latent rep-
resentations of all in-class data. By measuring the distances
between class means we can then determine which of them are
most distinct from each other according to the model. Choos-
ing very disparate classes should yield cases in which data is
easier to distinguish from each other than if their means were
located closely together. Given this information, we can further
differentiate between samples which lie closer to the mean of
their class than others (i.e. avoid outliers).

The human evaluators can therefore now be presented with
a smaller subset of representative image-audio pairs which lie
relatively close to their respective class means to get an idea of
what certain classes sound like. After an initial training phase
using such example data points, they can then be tasked to
match an audio to the image which generated it by choosing
from a list of options. The difficulty of this task can further
be varied by choosing options which are embedded closer or
farther away from each other in the latent space. Using this
qualitative evaluation methodology, it is possible to determine
whether the model’s latent space predictions line up with hu-
man notions of similarity in a more reproducible manner.

In our application of this approach, the 3 class means with
the highest cumulative distance are used. Based on them, the
24 closest data points each are collected. From these points, 4
examples per class are randomly selected and presented to the
evaluators at the beginning of the evaluation for a total of 12
example image-audio pairs (note that evaluators do not have
access to these examples after this initial stage). The other 60
samples are presented in 20 tasks with three distinct options
each. The corresponding audio of one of these three options is
randomly chosen as the truth value and evaluators are tasked to
identify the image from which this particular audio was gener-
ated. To avoid any further bias, the options’ ordering is shuffled
randomly across participants as well. During this process, no
direct feedback is given regarding whether a choice was cor-
rect or not and thus each person has to rely on their musical
intuition and short-term memory to identify the correct answer.
The more distinct and intuitive the classes sound and the more
internally coherent they are, the better the performance should
be.

Finally, the accuracy with which the evaluators were able
to identify the true audio-visual pairs generated by SynVAE is

measured. Higher values should mean that people were able
to correctly discern differences between the three presented
classes by hearing alone. Lower values would mean that the
model’s cross-modal translation is not consistent enough for hu-
man listeners to accurately perceive. To surface further patterns
in the annotations, we employ Fleiss’ kappa [9] and measure
whether certain types of errors occur more often than others.

6 EXPERIMENTS
Our experiments are aimed at increasingly complex visual
datasets, beginning with the simple, but interpretable MNIST
dataset [28] (see Section 6.2), continuing with the slightly more
complex CIFAR-10 dataset [25] (see Section 6.3) and finally con-
cluding with the highly diverse BAM dataset [46] (see Section
6.4). Each task follows a similar set-up which is described in Sec-
tion 6.1 according to the previously outlined methodology (see
Section 5). In an ablation study, we further analyse whether gen-
erated audio representations fall into a qualitatively acceptable
music space and how this relates to hyperparameter settings
and optimization objectives (see Section 6.5). Additionally, we
highly recommend listening to selected audio-visual examples
from each dataset on https://personads.me/x/synvae.

6.1 Set-up
All experiments follow a similar pipeline: First, visual β-VAEs
(VisVAEs) are trained on the respective dataset, tuned on the
validation split and evaluated on the held-out test set. Next, they
can be used to initialise the synesthetic VAE which is trained
using the methodology explained in Section 4. It too is trained,
validated and tested on the respective splits of the same data.
For each task, β-values in [0.1, 2.0] were tested in a grid search
pattern.

The quantitative evaluation involves measuring the recon-
struction error term (MSE), KL divergence from the canonical
prior in addition to metrics of the latent spaces and image re-
constructions. Using the methods outlined in Section 5.2, the
class consistency within the n nearest neighbours of each data
point’s latent representation is measured. Overall mutual infor-
mation between latent spaces is estimated using MINE [2] and
the quality of the reconstructed images is measured through
the accuracy with which they can be classified.

After running the quantitative evaluation and determining
which model parameters are best suited for the task at hand, a
qualitative evaluation task is generated based on the similarity
metrics of the visual model. This task is then loaded into a
web-based evaluation tool for the final evaluation by human
annotators. The code for the tool itself is available at https:
//personads.me/x/syneval-code.

Unless otherwise noted, all models (including MINE and
reconstruction classifiers) are trained for 100 epochs using early
stopping on the validation set. This takes approximately 8 hours
for VisVAEs, 30 hours for SynVAEs, 4 hours for the classifiers
and 1 hour for MINE on a single GPU instance.

6.2 MNIST
MNIST [28] is a typical dataset used for baseline evaluation
which consist of 70,000 monochromatic 28 × 28 images of in-
dividual, handwritten digits in a 6:1 training and testing split.
By splitting the training data into 50,000 and 10,000 images,
we create an additional validation set for tuning. Although the
original images are provided in grayscale, we make use of the

https://personads.me/x/synvae
https://personads.me/x/syneval-code
https://personads.me/x/syneval-code
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Model MSE KL P@10 Acc MINE

VisVAE (β = 0.1) 5.46 74.69 0.47 0.99 -
VisVAE (β = 0.5) 16.43 24.38 0.31 0.99 -
VisVAE (β = 1.0) 22.48 14.79 0.23 0.99 -

SynVAE (β = 0.1) 29.31 46.33 0.27 0.98 5.02
SynVAE (β = 0.5) 36.66 15.63 0.28 0.96 5.03
SynVAE (β = 1.0) 42.73 8.69 0.26 0.94 5.02

Table 1: MSE, KL divergence, precision at rank 10 (P@10) and
classification accuracy (Acc) for VisVAE and SynVAE models
on MNIST test set given different β values. Additionally, esti-
mated mutual information (MINE) between SynVAE’s visual
and auditive latent spaces.

commonly used additional binary simplification of the data to
pixels with intensity 1 or 0.

Due to the small size of the images, some models take flat-
tened versions of the images as input, but in order to emulate
the more complex models used later on, we use a convolu-
tional architecture (see Appendix A.3 for details). Latent vec-
tors are sampled from the encoder-specified distribution using
reparametrisation (see Equation 3) and have a dimensionality
of 50 (or 512 in the synesthetic case). Using the decoder’s out-
put, MSE reconstruction loss is computed and added to the KL
divergence term to produce the total loss Lsyn as defined in
Equation 10. Optimisation is performed using Adam [23] and a
learning rate of 10−3.

6.2.1 Quantitative Evaluation. Quantitative metrics for both
the single modality and the synesthetic VAE architectures with
varying β values are provided in Table 1 with additional results
in Appendix A.2, Table 4. We report MSE, KL divergence, near-
est neighbour precision at rank 10 (for SynVAE, embeddings
are drawn from the final auditive latent space) and classifica-
tion accuracy on the reconstructed images. First and foremost,
the β parameter’s effect on reconstruction quality is clearly
recognisable for all model types. Lower values result in lower
MSE at the cost of higher KL divergence. In general, synesthetic
models with corresponding β have higher reconstruction error
rates than their VisVAE counterparts and higher MSE overall.
The transformation of the images into music space therefore
results in a definite reduction of visual fidelity. Looking at re-
constructions from either model type (see Appendix A.1, Figure
10), it is indeed the case that SynVAE’s digits are blurrier than
in the visual-only case.

KL divergence however is lower for corresponding synes-
thetic models than for visual ones (in fact, up to a factor of 61%).
We attribute this to the fact that the fixed auditive component
of these models acts as a strong regularizer on the remaining
weights such that even without strongly weighting the KL loss
term, adherence to the prior distribution can be more easily
enforced.

The effect which the regularization of the latent distribution
has on embeddings and reconstructions is slightly more diffi-
cult to interpret. For the visual models reconstruction quality
seems to be stable across β as classifiers trained and evaluated
on reconstructed digits consistently achieve 0.99 classification
accuracy. This score is identical to the baseline classifier using
original images which also achieves an accuracy of 0.99. Near-
est neighbour precision however shows more variance between

models, the highest score being obtained by the visual model
with the lowest β = 0.1.

In order to provide further insights into this phenomenon,
it helps to compare results from the synesthetic case. Near-
est neighbour precision for the SynVAE models lies around
0.27 which is mostly lower than for their VisVAE counterparts,
but classification accuracy is rather comparable at 0.94 to 0.98,
meaning that digit classes in the reconstructions are still identi-
fiable. Comparing reconstructions, we can observe reasons for
why these effects may occur: while the VisVAEs are not only
able to reproduce clearer images than the SynVAEs, they also
seem to embed more digit details such as rotation and writing
style. This means that although both reconstructions are rec-
ognizable as the correct digit, SynVAE generates more general
representations.

MINE values are consistent across SynVAEs at around 5.02,
clearly indicating shared information across the visual and au-
ditive latent spaces. Since a mutual information of ln(10) ≈ 2.3
would at least be sufficient to encode MNIST’s class informa-
tion over 10 digits, the additionally available nats are likely to
encode more detailed style information of the images. Although
this metric is consistent across βs, the differences in MSE, P@10
and Acc would nonetheless indicate that some fidelity is lost.
Most importantly however, cross-modal latent representations
seem to share a higher level of consistency.

6.2.2 Qualitative Evaluation. In our qualitative experiments,
we examined whether the quantitative indications of audio-
visual consistency are perceived by humans as well. By embed-
ding the test set into the VisVAE latent space, we first identify
the digits which are most visually distinct. For MNIST, all Vis-
VAE agree upon the same three digits: "0", "1" and "4". The
β = 0.1 distinguishes these classes most strongly by embed-
ding them at a cumulative Euclidean distance of 12.16. This in
addition to this model’s high nearest neighbour P@10 points
towards a clearer separation of digit clusters which is why we
chose it to generate the evaluation task.

For the choice of SynVAE we especially focused on a bal-
ance between reconstruction quality and KL divergence. During
initial listening tests, we found that if the SynVAE’s KL diver-
gence is too high, the music it generates becomes more erratic
and amelodic, thereby making it more difficult for listeners to
discover coherent patterns within the data. We examine this
phenomenon in further detail in Section 6.5. In this task, the
β = 0.5 SynVAE strikes this balance best as its reconstruction
quality is still met with 96% classification accuracy while its KL
divergence is a third of the β = 0.1model. Although the β = 1.0
model in turn has approximately half the KL divergence of the
β = 0.5 model, this comes at the detriment of all other metrics.
As such, the latter model seems to be best suited for the task at
hand.

Following the methodology outlined in Section 5.3 we can
now further select the most representative samples of the evalu-
ation classes "0", "1" and "4". In Figure 4 these images in addition
to 1000 randomly selected data points are shown in the tSNE
[32] projections within VisVAE and SynVAE auditive latent
space respectively. From the highlighted means, we can see
that the largest cumulative distance of the class triplet is main-
tained for both the synesthetic and single-modality case.

Comparing these two projections, we also see more of the
quantitative metrics reflected. For one, the clusters formed by
the VisVAE embeddings show clearer separations while the
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Figure 4: TSNE plots of MNIST VisVAE latent space with β = 0.1 (left) and SynVAE auditive latent space with β = 0.5 (right) with
highlighted evaluation samples.
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Figure 5: Percentages of evaluator choices per class ("0", "1", "4") and task on the qualitative MNIST evaluation. Correct options
highlighted in green. Average accuracy marked at 73%.

SynVAE clusters are less clear cut and have some samples ap-
pearing far away from their class means. Some class-internal
style characteristics are also represented within the clusters.
For example, within the "1" cluster, the skew of the vertical
line making up the digit increases when moving up and away
from the mean. In the synesthetic space, these diagonal "1"s
also transition and mix with diagonal "8"s. Additionally, dig-
its such as "4" and "9" which are already visually similar on a
macro-level are embedded much closer to each other than in
the VisVAE space. This once again highlights how SynVAE is
able to maintain higher-level characteristics of the images, but
lacks fidelity when it comes to finer details within the classes
as corroborated by both the P@10 and Acc metrics.

To check whether human evaluators could nonetheless dis-
cern classes from each other given the auditive representation
of images produced by SynVAE, we conducted a classification
study with 11 participants (using the method described in Sec-
tion 5.3). After being presented with 12 audio-visual example
pairs, they were presented with a single audio and were tasked
to identify which of the three images was used to generate it.

Results from this task are presented in Figure 5. The partic-
ipants achieved a mean accuracy of 0.73 across 20 tasks with
a maximum evaluator score of 0.95 and a standard deviation
of 0.22. For two of the tasks all evaluators unanimously paired
up the correct image and audio. The overall inter-annotator
agreement as measured by Fleiss’ kappa is also consistent at
around 0.48.

Subjective feedback by the annotators showed that differ-
ences in pitch between classes were most easily identified. Fur-
ther deductions were based on major/minor chord separation
and the tempo of a composition as well as the overall number

of notes. In general, images of the digit "1" were identified with
the least ambiguity and an in-class precision of 0.96 since they
seem to consistently follow a major chord with lower pitch. "0"s
are of a higher pitch and tempo while "4"s seem to be mid-range
in pitch and tend to follow a minor chord. The discrimination
between the latter two classes seems to have been the most
difficult as reflected in their lower in-class precisions of 0.43
for "0"s and 0.75 for "1"s. Indeed, incorrect choices typically in-
volved a switch-up between these two classes as seen in task 9
and 12 for instance. At an extremum, 91% of evaluators mistook
a "4" for a "0" in task 5.

A closer look at per class quantitative metrics lines up with
these observations. "1"s achieve the highest P@10 scores for
both VisVAE (P@10: 0.55) and SynVAE (P@10: 0.51). "0" images
trail slightly behind with 0.53 P@10 for VisVAE and 0.46 P@10
for SynVAE. Meanwhile, "4"s are at the lower end with 0.43
P@10 for VisVAE and 0.16 P@10 for SynVAE.

Nonetheless, we still find that some "0"s and "4"s can be dis-
tinguished with high accuracy, as can be seen in tasks 7 and 18
in which all evaluators unanimously made the correct connec-
tion. Tasks 13 and 15 also show above average accuracy with
regard to "0" classification. Considering that evaluators only
got to see 4 audio-visual example pairs per class at the very
beginning of the task and nonetheless achieved a relatively
high accuracy shows that the cross-modal translations of Syn-
VAE are consistent and intuitive enough for human listeners to
understand and keep in their memory.
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Model MSE KL P@10 Acc MINE

VisVAE (β = 0.1) 19.75 122.70 0.12 0.91 -
VisVAE (β = 0.3) 31.77 58.01 0.11 0.90 -
VisVAE (β = 1.0) 52.70 22.30 0.11 0.89 -

SynVAE (β = 0.1) 74.05 69.81 0.13 0.87 5.17
SynVAE (β = 0.3) 80.55 30.90 0.13 0.87 5.17
SynVAE (β = 1.0) 88.76 14.14 0.13 0.86 5.14

Table 2: MSE, KL divergence, precision at rank 10 (P@10) and
classification accuracy (Acc) for VisVAE and SynVAE models
on CIFAR-10 test set given different β values. Additionally, es-
timated mutual information (MINE) between SynVAE’s visual
and auditive latent spaces.

Figure 6: TSNE plot of CIFAR-10 SynVAE auditive latent space
with β = 0.3.

6.3 CIFAR-10
In order to increase complexity compared to the MNIST task
while retaining a smaller number of distinct classes, our second
set of experiments focuses on the CIFAR-10 image dataset [25]
consisting of 32 × 32 × 3 RGB images which are labelled with
10 mutually distinct classes. It provides a training set of 50,000
images which we further separate into 40,000 training and
10,000 validation images. A 10,000 image test set is additionally
used for analyses and evaluation. All pixel values are scaled
from [0, 255] to [0, 1] for easier processing.

Similarly to the MNIST visual model, we employ a symmet-
ric CNN encoder decoder architecture, the details of which are
provided in Appendix A.3. While the final latent dimensional-
ity of 512 remains the same to ensure compatibility with the
auditive components of SynVAE, the remaining networks have
more weights and are also deeper than for MNIST to account
for the increased image complexity. Loss is calculated based on
Equation 10 as before and optimised using Adam [23] with a
learning rate of 10−3.

Since our focus lies on the musical interpretation of visual
art, we used the experiments conducted on CIFAR-10 as an
intermediate stepping stone between the simple, yet not very
artistic, MNIST digits and the artistic, but far more diverse
and complex, BAM artworks. As such, the effort required for
the qualitative evaluation involving human participants was
skipped for CIFAR-10 in favour of the final BAM data and we
will concentrate on the quantitative metrics alone, the most
interesting of which are presented in Table 2 with additional
results in Appendix A.2, Table 5.

With a higher overall MSE, reconstructing CIFAR-10 already
presents itself as a visually more complex task than the mono-
chrome MNIST digits. The β hyperparameter once again ade-
quately controls the reconstruction quality to prior adherence
trade-off with lower values producing clearer reconstructions
at the cost of higher KL divergence. As with the MNIST ex-
periments, the visual-only VAE architectures achieve crisper
reconstructions in general, the highest MSE amongst them still
being almost 30% lower than for the best performing SynVAE
(see reconstruction in Appendix A.1, Figure 11). It can therefore
be surmised that a certain loss of image fidelity is unavoidable
when passing the same information through music space.

Nonetheless, that same fixed, auditive latent space provides
its own regularisation on the distribution from which the in-
termediate latent embeddings are sampled. Even with β = 0.1
which permits a KL divergence of 122.70 for the VisVAE model,
the corresponding SynVAE remains solidly bounded at 69.81.
All other β settings also show that the synesthetic model is
able to maintain KL values close to half of that of their single-
modality counterparts.

Precision at rank 10 as averaged over the 10 classes in the
dataset is unfortunately less expressive than for the previous
MNIST case. Regardless of the type of model or its hyperpa-
rameters, P@10 ranges from around 0.11 (VisVAE) to 0.13 (Syn-
VAE), indicating performance similar to what a random baseline
would achieve. We attribute this difference to the fact that while
digits are fairly reliably identifiable by means of pairwise MSE
alone, the more complex CIFAR images are not. Since this re-
construction error is the only metric which our models use to
approximate visual similarity, it stands to argue that semantic
similarity as defined by the CIFAR-10 class labels does not cor-
relate strongly with pixel value differences. Looking closer at
P@10 per class, this seems further indicated by the fact that
images of classes with common visual attributes achieve higher
scores than those with more variance: air planes for instance
are typically visible on the backdrop of a blue sky and ships
are found on bodies of water. Corresponding to the lower class-
internal MSE, both classes have slightly higher P@10 scores of
up to 0.22.

Although the embeddings of our models do not seem to con-
form to their semantic labels, identifying class characteristics
are maintained in the reconstructions as evidenced by the rela-
tively high classification accuracies between 0.86 and 0.91 (0.93
for the baseline classifier). Even when the baseline classifier
which was trained on the original images is tested on recon-
structions from the VAEs accuracy, differences remain within
a -0.07 bound. The β parameter does not seem to have a very
strong effect on these scores regardless of model type, but a
slight drop-off of up to 0.04 in accuracy can be observed from vi-
sual to synesthetic models. As corroborated by the higher MSE
of SynVAE models and the previous observations for MNIST,
we can therefore conclude that while some amount of informa-
tion is lost in the audio-visual translation, consistency can be
maintained to such a degree that semantic classes can still be
identified fairly accurately.

Measuring audio-visual mutual information more directly
using MINE, we observe values which are comparable and even
slightly higher than for MNIST. Similar to the classification
accuracy which measures the inner-class consistency of recon-
structions, measuring the consistency of individual pairs of
auditive and visual latent representations shows relatively high
mutual information content across β . The β = 1.0 SynVAE
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achieves a slightly lower MINE score of 5.14 when compared
to the other two which indicates that it may become more diffi-
cult to encode audio-visual pairs more distinctly, the closer the
latent space is pushed towards the canonical prior. Considering
that there is more information to encode within CIFAR-10 more
distinct latent representations are preferable. At the same time
excessively high KL divergence is detrimental to the quality
of the generated music (see Section 6.5). It may therefore be
even more important to find a balance between the model’s
expressiveness and its adherence to a joint prior distribution
than for simpler and more distinct data such as MNIST.

Finally, a look at the embedded position of test images within
the final auditive latent space of the β = 0.3 SynVAE in the
tSNE plot of Figure 6 can provide an intuition about the infor-
mation actually retained across modalities. The loss in visual
fidelity which results as a consequence of passing data through
music space inhibits the model’s ability to encode object details
for distinguishing between a deer in front of green foliage from
a car in front of a forest or a black cat on a bright background
from a car on a white background, the overall colour differ-
ences are nonetheless maintained across the entire space. Even
in this two-dimensional representation, we can therefore still
observe how bright images with dark objects, objects on blue
skies, predominantly green nature images and similar colour-
based groups are clustered together and transition smoothly
into each other. The fact that these visually similar groups
do not strongly overlap with the semantic classes certainly
marks a loss in information content, but the audio-visual pairs
generated by the model should nonetheless provide valuable
higher-level information. For visually complex datasets such as
this one, the best strategy for tuning SynVAE may therefore be
to focus on improving higher-level consistency while finding a
compromise with joint latent space consistency as measured
by the KL divergence.

6.4 BAM
The Behance Artistic Media dataset (BAM) [46] contains ∼2.3m
annotated contemporary works of visual art and allows us
to evaluate SynVAE on a very complex and diverse dataset.
Annotations concern 9 content classes, 4 emotions and 7 media
types and were added automatically based on a model trained
on ∼400k crowd-sourced ground truth labels. These follow a
system of "positive", "unsure" and "negative" certainties for
which the authors cite 90% accuracy [46].

To simulate the environment of a painting exhibition, we
filter the original set down to oil paint and watercolour art
which leaves us with around 200k images of which ca. 180k
original images were still available to be retrieved from the
Behance online platform [20]. These images were then split
into a 115k training set, 29k validation set and a 36k held-
out test set. In order to speed up training and since detailed
reconstruction quality is of a lesser concern to us, we scaled
and cropped the images to 64×64×3with randomly positioned
crops for the training data and consistent centred crops for
validation and test splits. As with the previous experiments,
pixel values were scaled from [0, 255] to [0, 1]. The mirrored
CNN encoder-decoder architecture is slightly larger than for
MNIST and CIFAR-10 (see Appendix A.3 for details) and is once
again optimised using Adam [23] with a learning rate of 10−3.

For the evaluation, we focus on the provided emotion labels
"happy", "scary", "gloomy" and "peaceful". Since one image can

Model MSE KL P@10 Acc MINE

VisVAE (β = 0.1) 142.54 426.12 0.24 0.82 -
VisVAE (β = 0.3) 188.30 189.29 0.24 0.82 -
VisVAE (β = 1.0) 257.14 69.48 0.23 0.80 -
VisVAE (β = 1.3) 273.08 56.34 0.23 0.80 -
VisVAE (β = 1.7) 291.17 45.17 0.22 0.79 -

SynVAE (β = 0.1) 397.06 171.69 0.23 0.78 5.22
SynVAE (β = 0.3) 426.45 73.11 0.23 0.77 5.16
SynVAE (β = 1.0) 452.47 30.65 0.25 0.77 5.15
SynVAE (β = 1.3) 455.16 27.89 0.25 0.77 5.16
SynVAE (β = 1.7) 461.32 23.36 0.24 0.77 5.16

Table 3: MSE, KL divergence, precision at rank 10 (P@10) and
classification accuracy (Acc) for VisVAE and SynVAE models
on BAM test set given different β values. Additionally, esti-
mated mutual information (MINE) between SynVAE’s visual
and auditive latent spaces.

be labelled with multiple emotions, each with its own certainty,
and filtering data down to "positive" labels alone leaves us with
only a fifth of the data in very unbalanced splits (90% "peaceful"
and 2% "scary"), there is a need to employ slightly different
pre-processing steps for each type of quantitative evaluation.

Reconstruction classification is treated as a multi-label prob-
lem with "uncertain" labels rounded up to "positive" in order to
ensure sufficient data quantity. Meanwhile, nearest neighbour
precision is treated as a multi-class problem. This means that
images which are both gloomy and scary are treated as one
class "gloomy+scary" and only images that are exclusively scary
are marked as "scary". For this metric we also round "uncertain"
values to "positive" which results in a total of 16 distinct emo-
tion classes. Including uncertain labels however comes with
the drawback of less distinct image clusters since annotations
for highly subjective properties such as emotion are bound to
conflict each other. For generating qualitative evaluation tasks,
we therefore only use images which are exclusively labelled as
"positive" in order to filter out potentially ambiguous data.

6.4.1 Quantitative Evaluation. The quantitative metrics pre-
sented in Table 3 (additional results in Appendix A.2, Table
6) reflect the increased complexity of BAM compared to both
MNIST and CIFAR-10, in thatMSE and KL divergence are higher
across the board. Trends within the BAM models are however
consistent with previous observations. Adjusting the hyper-
parameter β in order to weight the adherence to the standard
Normal prior distribution behaves as expected and can there-
fore be used to find a suitable model for further qualitative
evaluation.

As before, the regularization by the auditive components of
SynVAE remain in effect such that the KL divergence can reach
values which are up to 61% lower than for VisVAEs with equal
β values. The larger MSE term nonetheless requires β to be set
slightly higher than in the previous experiments in order to bal-
ance out its stronger influence. We find that a β ≥ 1.0 is neces-
sary to constrain SynVAE to a KL divergence which approaches
the values which were found to work well for CIFAR-10 and
MNIST while not compromising too much on the amount of
high-level information that is retained.

Visual information which conveys emotion typically seems
to be overall colour (e.g. scary dark images) and content (e.g.
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peaceful landscapes). Based on the observations of CIFAR-10,
one would expect that SynVAEs would tend to encode the
colour information, but would lose detailed content, while Vis-
VAEs should be able to retain a certain level of both colour and
content details. The latter models’ higher reconstruction classi-
fication accuracy seems to concur with this hypothesis since the
lower β VisVAEs consistently achieve accuracies of 0.80 to 0.82
(closest to the 0.84 baseline) while the best SynVAE is slightly be-
hind with 0.78. These gains of the single-modality models could
be explained by the fact that atypical cases, such as a bright
scary image with the thin outline of a skull, would retain the
emotion-distinguishing content while a SynVAE would likely
loose this information and reconstruct a predominantly white
image without the outline. Although this increased level of
detail is beneficial to classification performance, the difference
its absence makes is acceptable. Furthermore, the higher-level
features of the SynVAE reconstructions still allow for a consis-
tent classification with around 0.77 across all examined β (see
Appendix A.1, Figure 12 for a visual comparison).

Within latent space, this difference is even less pronounced,
as P@10 lies between 0.22 and 0.25 for all models. Looking
at the tSNE plots of both VisVAE and SynVAE latent space in
Figure 7 shows why this might be the case. As with CIFAR-10,
the strongest measure of visual similarity seems to be overall
colour. Semantic classes can therefore only be encoded as far as
they are correlated with said high-level information. Although
emotions are connected with an image’s colour to some degree,
this alone is not sufficient to guarantee that it is embedded
close to images of the same class. The precision with which
such an embedding is possible seems to average out at the
aforementioned ∼0.25 range since this number is consistent
across both the visual and synesthetic VAEs. This, in addition
to the comparatively high classification accuracy, reaffirms
what has been observed before: SynVAE loses low-level details
during the translation into music space, but is able to encode
high-level information to a comparable degree as its single
modality counterpart.

Across modalities, MINE confirms that latent representations
share strong consistencies amongst each other. Given the higher
degree of flexibility the β = 0.1 model has in making more
distinct representations, its estimated mutual information is
also higher at 5.22. The remaining SynVAEs share similar MINE
scores of ∼5.16, pointing towards a stable lower bound for
mutual information within the evaluated range of β values.
This provides a high degree of certainty regarding the ability
of SynVAE to encode both differences and similarities in the
visual data consistently in the auditive space.

6.4.2 Qualitative Evaluation. Although the emotion classes of
BAM are not as easily identified as the digits of MNIST, the
VisVAEs nonetheless agree upon a triplet of class means which
are especially distinctive: "happy" ("h"), "scary" ("s") and "happy
+peaceful" ("hp"). Although the joint class "gloomy+scary" is
actually more distinct than "scary" alone, it only contains 12
data points with "positive" certainty. In order to generate a task
with a sufficient number of data points, we therefore opt for
the slightly less homogeneous, but next best, "scary" class.

The images selected by visual models for the evaluation task
strongly overlap across different β values and share almost all
data points (maximum difference of 3 images). Out of these
models, the β = 0.1 VisVAE was used to generate the final
task, since it embeds the class means furthest apart with a

cumulative distance of 15.89 and also comes with the highest
reconstruction classification accuracy and precision.

The choice of SynVAE is slightly more difficult to make,
especially since the quantitative metrics lie very close to each
other. Choosing a model with low KL divergence is nonetheless
paramount since the generated music might be amelodic to
human evaluators if it is too high (see Section 6.5). This leaves
models with β ≥ 1.0 since they have KL divergences which are
closest to the MNIST SynVAE used for qualitative evaluation.
While one could simply choose the model with the lowest KL
divergence, we opted for the intermediate β = 1.3 since it
achieves minimally higher P@10 as well as higher accuracy and
precision scores when evaluated with the baseline classification
model.

Making use of the β = 0.1 VisVAE and β = 1.3 SynVAE,
the qualitative evaluation is performed using an identical set-
up and procedure to the MNIST evaluation. 21 participants
with low overlap to those in the MNIST trial were presented
with 4 audio-visual examples per class. It is important to note
that although the examples are ordered by their class, it is not
explicitly stated which class is which. For MNIST digits, their
class adherence is simple to recognize, but for the more abstract
classes in BAM this may be more difficult. Furthermore, during
the testing phase, the image options are shuffled each time such
that class adherence cannot be inferred from their presentation.

Results for the 20 tasks in this trial are presented in Figure
8. Although the visual complexity of the task has risen signif-
icantly from the MNIST task, the evaluators are still able to
achieve an average accuracy of 71% with a standard deviation
of 0.13 and a maximum individual score of 95%. Fleiss’ kappa is
very close to that of MNIST with 0.46 and an actually greater
number of unanimous agreements. In 5 tasks, all evaluators
paired up the correct image to its musical representation.

A closer look reveals that 4 of these unanimous choices were
made for "scary" images with predominantly dark colour and
musical tones. This reflects the constellation of the VisVAE and
SynVAE latent spaces shown in Figure 7 in which this class
is furthest apart from the rest. The only other task in which
the "scary" image is the correct choice is number 19 with a
nonetheless high accuracy of 61%. Its correct audio-visual pair
has a dark red hue which results in music which is not as fast
or low as in the mostly black cases. Tasks 10 and 11 in which a
"happy+peaceful" and a "happy" image were correctly identified
by 90% and 100% of evaluators respectively, in addition to tasks
1, 2, 4 and 7 which also feature images from these classes and
have accuracies ≥ 71%, further show that high accuracy is not
necessarily limited to the most distinct "scary" class.

Larger errors typically occurred when the classes of two vi-
sually similar images were mistaken for each other. Tasks 5 and
6 for instance both feature audio generated from the "happy"
image, however the numer of votes for the "happy+peaceful"
image are almost equal in both cases. Looking at the options
available, task 5 features imageswith largelywhite backgrounds
and task 6 has more colourful images with blue skies for the two
aforementioned classes. This higher visual similarity is bound
to produce similar sounding audio which is more difficult to
distinguish as is evident from the scores for these two tasks.
The fact that none of the evaluators chose the darker "scary"
image in both cases further shows that the degree to which
the options differ visually, strongly affects the performance of
evaluators when distinguishing between them by ear alone.
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Figure 7: TSNE plots of BAM VisVAE latent space with β = 0.1 (left) and SynVAE auditive latent space with β = 1.3 (right) with
highlighted evaluation samples.
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Figure 8: Percentages of evaluator choices per class ("scary", "happy+peaceful", "happy") and task on the qualitative BAM evaluation.
Correct options highlighted in green. Average accuracy marked at 71%.

Another task in which this phenomenon becomes evident
is number 13. Here, the correct choice is a "happy+peaceful"
image with dark blue skies and an equally dark foreground and
an orange area in-between. It was most often confused with
the "scary" image which also features a dark background and
foreground matter in a slightly orange tint. While these two
images were confused frequently, this was not the case for the
"happy" image which was drawn on a white background.

Considering the complexity of the BAM task and the co-
herency of the choices made by the human evaluators with
respect to audio-visual consistency, it can be surmised that
SynVAE is very much able to translate the visual artwork in
this dataset into the musical domain with highly perceivable
accuracy.

6.5 Music Space
In our experiments in Sections 6.2, 6.3 and 6.4, the qualitative
metrics reflected a definite reduction in reconstruction quality
when passing image information through the musical auditive
latent space when compared to the single-modality VisVAE
architecture. One might therefore propose setting β → 0 in
order to further prioritize MSE. Indeed, it seems plausible that
the strong regularization imposed by MusicVAE might suffice
to improve the reconstruction loss term while keeping KL di-
vergence low enough to produce coherent audio-visual pairs.
Unfortunately, we did not find this to be the case.

When lacking a strong enough KL constraint, SynVAE tends
to push latent vectors far outside of the canonical prior. Al-
though the KL term might not be as large as for a VisVAE with
the same β-value, after a certain threshold, these vectors stray
into undefined music space. To illustrate this effect, we sampled

100 latent vectors from a standard Normal distribution and used
the single-modality MusicVAE to generate music based on them.
Furthermore we scaled each of these vectors by factors 0.1, 0.5,
2.0, 5.0 and 10.0 to simulate a stronger or weaker adherence
to the canonical prior. Due to the difficulty of measuring the
"realness" of the generated music, we used the surface level note
attack frequency feature to provide a rough estimation. The
results using the 2-bar melodic model (i.e. 32 notes maximum)
are shown in Figure 9.

The unscaled latent vectors produce a relatively evenly dis-
tributed set of melodies with around 3 to 15 notes (8% and 5%
respectively) centred around a 12% peak at 7 notes and with the
remaining percentages lying approximately in between. This
seems reasonable for a total 2-bars of music since the length of
notes may vary to fill out the full timeline. Scaling the vectors
by a factor of 2 or 0.5 seems to roughly maintain this unaltered
frequency distribution albeit not as smoothly. Moving further
towards the 0 centred mean with factors 0.5 and 0.1, we see
however that variance decreases until we arrive at a canonical
melody of 7 notes with 99% probability.

Moving out further outside of the canonical space, as is the
case when no strong KL bound is enforced, we observe for the
factors 5 and 10 that the generated music spreads out to either
a single note or two with around 25% and 14% probability or
to the other extreme with a full set of 32 notes at around 10%
- 14%. These melodies do not sound very realistic, since they
either have only one note onset in the entire piece or are very
fast without any pauses.

These measurements line up with observations from low β
SynVAE and become even more pronounced as the KL loss term
is omitted entirely. With such objectives, music becomes very
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Figure 9: Percentages of note attack frequencies in 2-bar music generated from 100 latent vectors sampled from a standard Normal
distribution and scaled by the factor on the y-axis.

fast and dissonant. Similarly, enforcing a KL constraint on the
auditive components of the model in addition to the visual ones
quickly lead to latent collapse with very non-distinct music
unless learning rates and β were kept especially low.

When working across modalities it therefore seems neces-
sary to balance reconstruction quality metrics sufficiently with
the latent space’s divergence from the cross-modal prior since
it may have a strong effect on the realism of the output in the
target modality. In our experiments, this would correspond
to finding an optimal MSE-KL trade-off in order to maximize
audio-visual correspondence while not compromising the per-
ceived quality of the musical output.

7 DISCUSSION
In the following, we will summarize the results of all three ex-
periments with respect to our goal of audio-visual consistency
and assess how the quantitative metrics relate to the humanly
perceived consistency measured in our qualitative studies.

Since SynVAEmust learn to translate between sensorymodal-
ities in the absence of paired ground truth data, audio-visual
consistency is its principal focus. Evaluating its performance
with regard to this was shown to be difficult using a single
quantitative metric alone. Precision metrics based on the near-
est neighbours of a data point embedded in the learned latent
space were indicative of consistency only if visual similarity
was strongly correlated with semantic similarity as defined by
the labelled image data. For MNIST this was found to be the
case since the monochrome nature of the dataset as well as the
relatively low variance between images of the same class allow
for MSE to be an appropriate surrogate for the information
content of an image.

For more complex datasets such as CIFAR-10, this metric was
not as expressive. With an exponentially higher amount of in-
formation as well as a higher in-class variance, it becomes more
difficult for SynVAE to encode lower-level details. Similarly,
BAM increases the amount of pixels and the visual variance
once more such that not all visual details are retained when
they are passed through SynVAE’s latent space. In this case
however, the emotion labels tend to share a larger degree of
correlation with higher-level image features (e.g. dark images
being "scary") such that the precision at rank 10 is almost twice
as high as that of CIFAR-10.

Although it is more difficult to interpret latent space consis-
tency of the latter two datasets with nearest neighbour metrics
alone, reconstruction classification provides a more flexible
way to do so. It relies on semantic labels as well, but has the
benefit that it is indicative of whether same-class image data is
consistently encoded and decoded. Using the baseline classifica-
tion model trained on unaltered images, it is further possible to
measure how consistent reconstructed images are with respect
to the original data. Across all experiments classification accu-
racy showed that while there is a certain degree of information
loss when passing through latent spaces cross-modally, overall
visual consistency of semantic classes is maintained.

Independent of labelled data, MINE allows us to quantita-
tively measure the consistency across latent spaces. The rela-
tively high amount of mutual information between visual and
auditive latent spaces show that SynVAE does indeed learn to
embed a substantial amount of information consistently across
modalities and different types of visual data. Because the esti-
mated mutual information is slightly higher for CIFAR-10 and
BAM than for MNIST, this might be pointing towards SynVAE
learning to embed the more complex, higher variance datasets
more distinctively.

Combining these three quantitative metrics, it becomes ap-
parent that information content is being translated acrossmodal-
ities consistently. In the qualitative evaluations of MNIST and
BAM, we have further shown that this theoretical consistency
is actively perceived by human evaluators. Through the quanti-
tatively informed pre-selection process, the evaluated data is
ensured to be representative of similarity relations within each
dataset. The high accuracy with which the evaluators were able
to distinguish between the three most distinct classes shows
that low-level information can be conveyed audibly for sim-
ple data and high-level information can be conveyed for more
complex data as well. While there is a cross-modal information
bottleneck, mistakes nonetheless line up with visual similarity.
This in addition to the fact that evaluators are able to achieve
up to 100% accuracy for very distinct data points confirms that
audio-visual consistency is not only theoretical, but also very
perceivable.
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8 CONCLUSION
As shown by our results, it can be concluded with high con-
fidence that SynVAE is able to consistently translate a wide
range of images, including art, into the auditory domain of
music through unsupervised learning mechanisms. In this fi-
nal section, we will lay out potential areas of applications for
SynVAE (Section 8.1) as well as highlight topics which might
be interesting for future research (Section 8.2).

8.1 Applications
SynVAE as implemented here is already applicable in many
practical scenarios. First and foremost, abstract visual infor-
mation such as art can be translated into short musical pieces
which convey high-level structures in a fast and intuitive way.
Instead of listening to a long list of artwork titles and descrip-
tions for instance, a museum visitor could simply scan through
four second bits of music and decide which part of a collec-
tion they would like to experience most. This feature could
not only be useful to visually impaired visitors, but to sighted
ones as well. As a proof of concept, we have made a subset
of ∼1000 musically translated artworks from the Van Gogh
Museum’s permanent collection available on the project’s web-
site (https://personads.me/x/synvae). With a pre-trained model
this translation process takes less than one minute to complete.
While the shorter musical compositions generated in the scope
of this research may not be enjoyable enough to be played long
term at art exhibitions, they may nonetheless be helpful in pro-
viding intuitive insights into the nature of the visual artworks
which are being encoded.

Depending on the domain of the data which the models
were trained on, they can furthermore be used as a sonification
tool in many more areas. Especially when abstract forms of
visual data are in use, a short and intuitive auditive represen-
tation could help translate insights across sensory modalities.
So while detailed schematics, graphs or figures would likely
not be translated precisely enough, higher-level similarities
and differences could still be retained. With better performing
generative components which process data from a wider range
of modalities, the scope of applications could furthermore be
increased extensively.

8.2 Future Work
The possibilities for future research which are opened up by this
synesthetic approach are manifold. Using the steadily advanc-
ing methods of music generation, the quality of cross-modal
translation can be improved further in the future to provide
longer, polyphonic pieces which are more distinctive and also
more enjoyable to listen to. Such methods would of course
still have to maintain latent space consistency, but using more
advanced optimization targets based on reconstruction clas-
sification accuracy instead of MSE (if labels are available) or
mutual information estimation between latent spaces instead
of the KL divergence, could provide the necessary components
to achieve this.

In the evaluation procedure so far, we have relied on the
semantic labels provided in the image data. This can be suffi-
cient if these classes line up strongly with visual features, but
may become impractical if they do not or are not available at
all. Training SynVAE would of course not be an issue since it
does not rely on labelled data, but evaluation becomes difficult
nonetheless. For such cases, it could be interesting to evaluate

the performance of automatic clustering algorithms such as
k-means [31]. By once again calculating these means in the
VisVAE latent space, we circumvent potential self-confirmation
bias which could arise if clusters are constructed in SynVAE
space. In a small number of trial runs, we found that this method
may be promising, but is highly sensitive to k as the number
of clusters determines their internal variance and cross-cluster
distinctiveness. Further investigation is therefore needed in
order to achieve a fully unsupervised evaluation pipeline.

In the scope of a larger qualitative study with more partic-
ipants and a larger number of tasks it would furthermore be
interesting to explore more properties of the latent space and
how they relate to human perception. By systematically pre-
senting evaluators with samples which are closer or farther
away from class means and by presenting options which are
either very close to each other or more distant, the correla-
tion between the theoretical difficulty defined by latent space
distances and the actually perceived difficulty could be deter-
mined. Given a large number of representative tasks, these
measurements could be used to further inform the relationship
between quantitative and qualitative metrics in a synesthetic
environment.

Additionally, this research has not yet made use of the space
in-between data points. As VAEs guarantee a degree of latent
space consistency and have been shown to interpolate well
between data in single-modality settings [14, 15, 24, 42], this
should also be explored in a synesthetic environment. The fact
that we find consistency between similar data across modalities
in our experiments lends strong credibility to this hypothesis.

Finally, the modular nature of SynVAE also allows for this ap-
proach to be extended to more modality-pairs. With the set-up
used in this research, we could for instance theoretically gener-
ate digits or visual art based on musical melodies by exchanging
the modalities of the model’s encoder and decoder components.
Since the architecture does not limit us to audio-visual data, it is
furthermore possible to extend it to any modality pair for which
high quality datasets in each respective domain exist. We hope
that the evaluation methodology outlined in this research will
provide a solid basis for measuring cross-modal information
consistency, in addition to SynVAE itself enabling better access
to that information across sensory boundaries.
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A APPENDICES
A.1 Reconstructions

Figure 10: Original images, VisVAE (β = 0.1) and SynVAE
(β = 0.5) reconstructions of 36 random data points in MNIST
test set (left-to-right ordered triplets).

Figure 11: Original images, VisVAE (β = 0.1) and SynVAE
(β = 0.3) reconstructions of 36 random data points in CIFAR-
10 test set (left-to-right ordered triplets).

Figure 12: Original images, VisVAE (β = 0.1) and SynVAE
(β = 1.3) reconstructions of 36 random data points in BAM
test set (left-to-right ordered triplets).

A.2 Additional Results
Table 4 contains additional quantitative metrics for the MNIST
task described in Section 6.2.

Model P@1 P@5 ClAcc ClPr

VisVAE (β = 0.1) 0.50 0.48 0.99 (0.99) 0.97 (0.97)
VisVAE (β = 0.5) 0.36 0.33 0.99 (0.99) 0.95 (0.96)
VisVAE (β = 1.0) 0.27 0.25 0.99 (0.98) 0.93 (0.92)

SynVAE (β = 0.1) 0.29 0.28 0.98 (0.97) 0.89 (0.88)
SynVAE (β = 0.5) 0.30 0.29 0.96 (0.95) 0.81 (0.79)
SynVAE (β = 1.0) 0.27 0.26 0.94 (0.90) 0.71 (0.68)

Table 4: Precision at rank 1 (P@1) and 5 (P@5), classification
accuracy (ClAcc) and precision of classifier trained on originals
(in brackets) or reconstructions, on MNIST test set.

Table 5 contains additional quantitativemetrics for the CIFAR-
10 task described in Section 6.3.

Model P@1 P@5 ClAcc ClPr

VisVAE (β = 0.1) 0.12 0.12 0.91 (0.91) 0.57 (0.56)
VisVAE (β = 0.3) 0.12 0.11 0.90 (0.90) 0.51 (0.47)
VisVAE (β = 1.0) 0.11 0.11 0.89 (0.87) 0.43 (0.34)

SynVAE (β = 0.1) 0.13 0.13 0.87 (0.85) 0.36 (0.26)
SynVAE (β = 0.3) 0.13 0.13 0.87 (0.85) 0.34 (0.24)
SynVAE (β = 1.0) 0.13 0.13 0.86 (0.85) 0.31 (0.22)

Table 5: Precision at rank 1 (P@1) and 5 (P@5), classification
accuracy (ClAcc) and precision of classifier trained on originals
(in brackets) or reconstructions, on CIFAR-10 test set.

Table 6 contains additional quantitative metrics for the BAM
task described in Section 6.4.

Model P@1 P@5 ClAcc ClPr

VisVAE (β = 0.1) 0.24 0.23 0.82 (0.78) 0.78 (0.77)
VisVAE (β = 0.3) 0.25 0.24 0.82 (0.75) 0.78 (0.76)
VisVAE (β = 1.0) 0.23 0.23 0.80 (0.73) 0.76 (0.75)
VisVAE (β = 1.3) 0.23 0.23 0.80 (0.72) 0.75 (0.75)
VisVAE (β = 1.7) 0.23 0.22 0.79 (0.71) 0.76 (0.74)

SynVAE (β = 0.1) 0.23 0.23 0.78 (0.69) 0.72 (0.73)
SynVAE (β = 0.3) 0.24 0.23 0.77 (0.69) 0.72 (0.73)
SynVAE (β = 1.0) 0.25 0.25 0.77 (0.68) 0.72 (0.69)
SynVAE (β = 1.3) 0.25 0.25 0.77 (0.69) 0.72 (0.72)
SynVAE (β = 1.7) 0.24 0.25 0.77 (0.68) 0.71 (0.72)

Table 6: Precision at rank 1 (P@1) and 5 (P@5), classification
accuracy (ClAcc) and precision of classifier trained on originals
(in brackets) or reconstructions, on BAM test set.
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A.3 Network Architectures

MNIST CIFAR-10 BAM

x ∈ R28×28 x ∈ R32×32×3 x ∈ R64×64×3

RL(Cv(32, 3, 2)) RL(Cv(64, 3, 2)) RL(Cv(64, 3, 2))
RL(Cv(64, 3, 2)) RL(Cv(128, 3, 2)) RL(Cv(128, 3, 2))
FC(512) RL(Cv(256, 3, 2)) RL(Cv(128, 3, 2))

FC(4096) → FC(512) RL(Cv(256, 3, 2))
FC(4096) → FC(512)

z ∈ R512/50 z ∈ R512 z ∈ R512

FC(7 × 7 × 32) FC(4 × 4 × 256) FC(4 × 4 × 256)
RL(Cv(64, 3, 2)) RL(Cv(256, 3, 2)) RL(Cv(256, 3, 2))
RL(Cv(32, 3, 2)) RL(Cv(128, 3, 2)) RL(Cv(128, 3, 2))
σ (Cv(1, 3, 1)) RL(Cv(64, 3, 2)) RL(Cv(128, 3, 2))

σ (Cv(3, 1, 1)) RL(Cv(64, 3, 2))
σ (Cv(3, 1, 1))

Table 7: Network architectures for MNIST [28], CIFAR-
10 [25] and BAM [46] VisVAEs. Convolutions denoted as
Cv(filters, size, stride), fully-connected layers as FC(outdim),
ReLU [36] as RL and sigmoid as σ .

The architectures used for the encoder and decoder networks
for the MNIST [28], CIFAR-10 [25] and BAM [46] VisVAEs
are shown in Table 7. Set-ups remained identical when they
were used in the visual components of the respective SynVAEs.
Reconstruction classification was done using models based
on the encoder architecture, but with the final FC(512) layer
being replaced by FC(Nclasses) with a softmax activation. Due
to the multi-label nature of BAM’s classification, its final layer
is capped with a sigmoidal activation.
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